МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 5 ИМЕНИ ГЕРОЯ РОССИЙСКОЙ ФЕДЕРАЦИИ М.Г. ЕФРЕМОВА г. ВЯЗЬМЫ СМОЛЕНСКОЙ ОБЛАСТИ

(МБОУ СОШ № 5 г. Вязьмы Смоленской области)

215100 Смоленская область, г. Вязьма, ул. Заслонова, 8. 2 смоте директор − 5 24 04, учительская − 3 58 51, бух. − 4 11 92 e-mail: direktor. 54 @mail.ru; www://vz-5-school.narod.ru/ ОКПО 47659516; ОГРН 1026700852518; ИНН/КПП 6722012239/672201001

СОГЛАСОВАНО

На заселании метолического объелинения МБОУ СОШ № 5 г. Вязьмы Смоленской области Протокол № 1 от 30.08.2022

ПРИНЯТО

На заседании педагогического совета МБОУ СОШ № 5 г. Вязьмы Смоленской области Протокол № 1 от 30.08.2022

УТВЕРЖДЕНО

Приказом директора МБОУ СОШ № 5 г. Вязьмы Смоленской области № 106-01-02 от 01.09.2022

Рабочая программа

по химии

для 11 классов

на 2022/2023 учебный год

Учитель: Соваков В.Н.

Ильина Инга DN: C=RU, OU=директор МБОУ СОШ №5, О=МБОУ СОШ №5 г.Вязьмы Смоленской области, CN=Ильина Инга Викторовна, E=direktor.54@mail.ru Викторовна Р Дата: 2021.12.10 14:57:47+03'00' Foxit Reader Версия: 10.1.1

Основание: Я являюсь автором этого документа

Соответствует ФГОС среднего общего образования

(Приказ Минобрнауки РФ от 06.10.2009 № 413 «Об утверждении и введении в действие федерального государственного образовательного стандарта среднего общего образования» (в редакции приказов от 29.12.2014 №1645, от 31.12.2015 №1578, от 29.06.2017 N 613, 24 сентября, 11 декабря 2020 г.))

Рабочая программа по химии для 11 класса

(3 час в неделю, 102 часов; углубленный уровень)

Рабочая общеобразовательная программа по химии (углубленный уровень) для 10 класса составлена на основе следующих нормативных документов:

- 1. Федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО) (утвержден приказом Министерства образования и науки Российской Федерации от 06.10.2019 №413).
 - 2. Федерального перечня учебников на 2022/2023 учебный год.
 - 3. Основной образовательной программы МБОУ СОШ №5.
- 4. Общеобразовательной программы по химии (углубленный уровень) для 10 -11 класса, авторской программы по химии Габриеляна О.С. Реализуется УМК под редакцией Габриеляна О.С.

Рабочая программа по химии составлена с учетом рабочей программы воспитания. Воспитательный потенциал данного учебного предмета обеспечивает реализацию следующих целевых приоритетов воспитания обучающихся: уважение и принятие достижений химии в мире, развитие чувство гордости за российскую химическую науку и уважение к истории ее развития; убежденности в том, что применение полученных знаний и умений является объективной необходимостью для безопасной работы с веществами и материалами; развитие экологической грамотности и основ здорового образа жизни.

Планируемые результаты обучения и освоения содержания курса химия для 11 класса.

Предполагается, что результатом изучения химии в 11 классе является развитие у учащихся компетентностей — социально-адаптивной (гражданственной), когнитивной (познавательной), информационно-технологической, коммуникативной. Овладение универсальными учебными действиями значимо для социализации, мировоззренческого и духовного развития учащихся, позволяющими им ориентироваться в социуме и быть востребованными в жизни.

Личностные результаты

знать и понимать: основные исторические события, связанные с развитием химии и общества; достижения в области химии и культурные традиции (в частности, научные традиции) своей страны; общемировые достижения в области химии; основы здорового образа жизни; правила поведения в чрезвычайных ситуациях, связанных с воздействием различных веществ; социальную значимость и содержание профессий, связанных с химией; основные права и обязанности гражданина (в том числе учащегося), связанные с личностным, профессиональным и жизненным самоопределением;

испытывать: чувство гордости за российскую химическую науку и уважение к истории ее развития; уважение и принятие достижений химии в мире; уважение к окружающим (учащимся, учителям, родителям и др.) — уметь слушать и слышать партнера, признавать право каждого на собственное мнение и принимать решения с учетом позиций всех участников; самоуважение и эмоционально-положительное отношение к себе;

признавать: ценность здоровья (своего и других людей); необходимость самовыражения, самореализации, социального признания; осознавать: готовность (или неготовность) к самостоятельным поступкам и действиям, принятию ответственности за их результаты; готовность (или неготовность) открыто выражать и отстаивать свою позицию и критично относиться к своим поступкам; проявлять: доброжелательность, доверие и внимательность к людям, готовность к сотрудничеству и дружбе, оказанию помощи нуждающимся в ней; устойчивый познавательный интерес, инициативу и любознательность в изучении мира веществ и реакций; целеустремленность и настойчивость в достижении целей, готовность к преодолению трудностей; убежденность в возможности познания природы, необходимости разумного использования достижений науки и технологий для развития общества;

уметь: устанавливать связь между целью изучения химии и тем, для чего она осуществляется (мотивами); выполнять прогностическую самооценку, регулирующую активность личности на этапе ее включения в новый вид деятельности, связанный с началом изучения нового учебного предмета — химии; выполнять корригирующую самооценку, заключающуюся в контроле за процессом изучения химии и внесении необходимых коррективов, соответствующих этапам и способам изучения курса химии; строить жизненные и профессиональные планы с учетом конкретных социально-исторических, политических и экономических условий; осознавать собственные ценности и их соответствие принимаемым в жизни решениям; вести диалог на основе равноправных отношений и взаимного уважения; выделять нравственный аспект поведения и соотносить поступки (свои и других людей) и события с принятыми этическими нормами; в пределах своих возможностей противодействовать действиям и влияниям, представляющим угрозу жизни, здоровью и безопасности личности и общества.

Метапредметные результаты

- 1. использование умений и навыков различных видов различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- 2. использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинноследственных связей, поиск анализов;
- 3. Умение генерировать идеи и определять средства, необходимые для их реализации:
- 4. Умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
- 5. Использование различных источников для получения химической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата.

Предметные результаты:

1) сформированность системы знаний об общих химических закономерностях, законах, теориях;

- 2) сформированность умений исследовать свойства неорганических и органических веществ, объяснять закономерности протекания химических реакций, прогнозировать возможность их осуществления;
- 3) владение умениями выдвигать гипотезы на основе знаний о составе, строении вещества и основных химических законах, проверять их экспериментально, формулируя цель исследования;
- 4) владение методами самостоятельного планирования и проведения химических экспериментов с соблюдением правил безопасной работы с веществами и лабораторным оборудованием; сформированность умений описания, анализа и оценки достоверности полученного результата;
- 5) сформированность умений прогнозировать, анализировать и оценивать с позиций экологической безопасности последствия бытовой и производственной деятельности человека, связанной с переработкой веществ.

Ученик должен знать / понимать

важнейшие химические понятия: вещество, химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, аллотропия, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем, вещества молекулярного и немолекулярного строения, растворы, электролит неэлектролит, электролитическая диссоциация, окислитель восстановитель, окисление и восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие, углеродный скелет, функциональная группа, изомерия, гомология;

основные законы химии: сохранения массы веществ, постоянства состава, периодический закон;

основные теории химии: химической связи, электролитической диссоциации, строения органических соединений;

важнейшие вещества и материалы: основные металлы и сплавы; серная, соляная, азотная и уксусная кислоты; щелочи, аммиак, минеральные удобрения, метан, этилен, ацетилен, бензол, этанол, жиры, мыла, глюкоза, сахароза, крахмал, клетчатка, белки, искусственные и синтетические волокна, каучуки, пластмассы;

Ученик должен уметь:

называть изученные вещества по «тривиальной» или международной номенклатуре;

определять: валентность и степень окисления химических элементов, тип химической связи в соединениях, заряд иона, характер среды в водных растворах неорганических соединений, окислитель и восстановитель, принадлежность веществ к различным классам органических соединений;

характеризовать: элементы малых периодов по их положению в периодической системе Д.И.Менделеева; общие химические свойства металлов, неметаллов, основных классов неорганических и органических соединений; строение и химические свойства изученных органических соединений;

объяснять: зависимость свойств веществ от их состава и строения; природу химической связи (ионной, ковалентной, металлической), зависимость скорости химической реакции и положения химического равновесия от различных факторов;

выполнять химический эксперимент по распознаванию важнейших неорганических и органических веществ;

проводить самостоятельный поиск химической информации с использованием различных источников (научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и ее представления в различных формах;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

объяснения химических явлений, происходящих в природе, быту и на производстве;

определения возможности протекания химических превращений в различных условиях и оценки их последствий;

экологически грамотного поведения в окружающей среде;

оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;

безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;

приготовления растворов заданной концентрации в быту и на производстве; критической оценки достоверности химической информации, поступающей из разных источников.

Содержание учебного курса химия (базовый уровень) 11 класс.

Тема 1

Строение атома (12 ч)

Аттом — **сложная частица**. Ядро и электронная оболочка. Электроны, протоны и нейтроны. Микромир и макромир. Дуализм частиц микромира.

Состояние электронов в атоме. Электронное облако и орбиталь. Квантовые числа. Форма орбиталей (s, p, d, f). Энергетические уровни и подуровни. Строение электронных оболочек атомов. Электронные конфигурации атомов элементов. Принцип Паули и правило Гунда. Электронно-графические формулы атомов элементов. Электронная классификация элементов: s-,p-, d- и f-семейства.

Валентные возможности атомов химических элементов. Валентные электроны. Валентные возможности атомов химических элементов, обусловленные числом неспаренных электронов в нормальном и возбужденном состояниях. Другие факторы, определяющие валентные возможности атомов: наличие неподеленных электронных пар и наличие свободных орбиталей. Сравнение понятий «валентность» и «степень окисления».

Периодический закон и периодическая система химических элементов Д. И. Менделеева и строение атома. Предпосылки открытия периодического закона: накопление фактологического материала, работы предшественников (И. Я. Берцелиуса, И. В. Деберейнера, А. Э. Шанкуртуа, Дж. А. Ньюлендса, Л. Ю. Мейера); съезд химиков в Карлсруэ. Личностные качества Д. И. Менделеева.

Открытие Д. И. Менделеевым периодического закона. Первая формулировка периодического закона. Горизонтальная, вертикальная и диагональная периодические зависимости.

Периодический закон и строение атома. Изотопы. Современная трактовка понятия «химический элемент». Закономерность Ван-ден-Брука — Мозли. Вторая формулировка периодического закона. Периодическая система Д. И. Менделеева и строение атома. Физический смысл порядкового номера элементов, номеров группы и периода. Причины изменения металлических и неметаллических свойств элементов в группах и периодах, в том числе больших и сверхбольших. Третья формулировка периодического закона. Значение периодического закона и периодической системы химических элементов Д.И. Менделеева для развития науки и понимания химической картины мира.

Тема 2

Строение вещества. Дисперсные системы (13 ч)

Химическая связь. Единая природа химической связи. Ионная химическая связь и ионные кристаллические решетки. Ковалентная химическая связь и ее классификация: по механизму образования (обменный и донорно-акцепторный), по электроотрицательности (полярная и неполярная), по способу перекрывания электронных орбиталей (σ и π), по кратности (одинарная, двойная, тройная и полуторная). Полярность связи и полярность молекулы. Кристаллические решетки веществ с ковалентной связью: атомная и молекулярная. Металлическая химическая связь и металлические кристаллические решетки. Водородная связь: межмолекулярная и внутримолекулярная. Механизм образования этой связи, ее значение.

Межмолекулярные взаимодействия.

Единая природа химических связей: ионная связь как предельный случай ковалентной полярной связи; переход одного вида связи в другой; разные виды связи в одном веществе и т. д.

Свойства ковалентной химической связи. Насыщаемость, поляризуемость, направленность. Геометрия молекул.

Гибридизация орбиталей и геометрия молекул. sp^3 -гибридизация у алканов, воды, аммиака, алмаза; sp^2 -гибридизация у соединений бора, алкенов, аренов, диенов и графита; sp-гибридизация у соединений бериллия, алкинов и карбина. Геометрия молекул названных веществ.

Полимеры органические и неорганические. Полимеры. Основные понятия химии высокомолекулярных «полимер», соединений: «мономер», «макромолекула», «структурное звено», «степень полимеризации», «молекулярная масса». Способы получения полимеров: реакции полимеризации и поликонденсации. Строение полимеров: геометрическая форма макромолекул, кристалличность аморфность, стереорегулярность. Полимеры органические и неорганические. Каучуки. Пластмассы. Волокна. Биополимеры: белки и нуклеиновые кислоты. Неорганические полимеры атомного строения (аллотропные модификации углерода, кристаллический кремний,

селен и теллур цепочечного строения, диоксид кремния и др.) и молекулярного строения (сера пластическая и др.).

Теория строения химических соединений А.М. Бутлерова. Предпосылки создания теории строения химических соединений: работы предшественников (Ж.Б. Дюма, Ф. Велер, Ш.Ф. Жерар, Ф.А. Кекуле), съезд естествоиспытателей в Шпейере. Личностные качества А.М. Бутлерова.

Основные положения теории химического строения органических соединений и современной теории строения. Изомерия в органической и неорганической химии. Взаимное влияние атомов в молекулах органических и неорганических веществ.

Основные направления развития теории строения органических соединений (зависимость свойств веществ не только от химического, но и от их электронного и пространственного строения). Индукционный и мезомерный эффекты. Стереорегулярность.

Диалектические основы общности двух ведущих теорий химии. Диалектические основы общности периодического закона Д.И. Менделеева и теории строения А.М. Бутлерова в становлении (работы предшественников, накопление фактов, участие в съездах, русский менталитет), предсказании (новые элементы — Ga, Se, Ge и новые вещества — изомеры) и развитии (три формулировки).

Дисперсные системы. Понятие о дисперсных системах. Дисперсионная среда и дисперсная фаза. Типы дисперсных систем и их значение в природе и жизни человека. Дисперсные системы с жидкой средой: взвеси, коллоидные системы, их классификация. Золи и гели. Эффект Тиндаля. Коагуляция. Синерезис. Молекулярные и истинные растворы. Способы выражения концентрации растворов.

Расчетные задачи. 1. Расчеты по химическим формулам. 2. Расчеты, связанные с понятиями «массовая доля» и «объемная доля» компонентов смеси. 3. Вычисление молярной концентрации растворов.

Демонстрации. Модели кристаллических решеток веществ с различным типом связей. Модели молекул различной геометрии. Модели кристаллических решеток алмаза и графита. Модели молекул изомеров структурной и пространственной изомерии. Свойства толуола. Коллекция пластмасс и волокон. Образцы неорганических полимеров: серы пластической, фосфора красного, кварца и др. Модели молекул белков и ДНК. Образцы различных систем с жидкой средой. Коагуляция. Синерезис. Эффект Тиндаля.

Лабораторные опыты. 1. Свойства гидроксидов элементов 3-го периода. 2. Ознакомление с образцами органических и неорганических полимеров.

Практическая работа №1:Решение эксперементальных задач по распознаванию пластмасс и волокон.

Тема 3

Химические реакции (25 ч)

Классификация химических реакций в органической и неорганической химии. Понятие о химической реакции; ее отличие от ядерной реакции. Реакции, идущие без качественного состава веществ: аллотропизация, изомеризация полимеризация. Реакции, идущие с изменением состава веществ: по числу и составу реагирующих и образующихся веществ (разложения, соединения, замещения, обмена); по изменению степеней окисления элементов (окислительно-восстановительные реакции и неокислительно-восстановительные реакции); ПО тепловому эффекту эндотермические); по фазе (гомо- и гетерогенные); по направлению (обратимые и необратимые); по использованию катализатора (каталитические и некаталитические); по механизму (радикальные и ионные); по виду энергии, инициирующей реакцию (фотохимические, радиационные, электрохимические, термохимические). Особенности классификации реакций в органической химии.

Вероятность протекания химических реакций. Закон сохранения энергии. Внутренняя энергия и экзо- и эндотермические реакции. Тепловой эффект химических реакций. Термохимические уравнения. Теплота образования. Понятие об энтальпии. Закон Г.И. Гесса и следствия из него. Энтропия. Энергия Гиббса. Возможность протекания реакций в зависимости от изменения энергии и энтропии.

Скорость химических реакций. Понятие о скорости реакции. Скорость гомо- и гетерогенной реакции. Энергия активации. Элементарные и сложные реакции. Факторы, влияющие на скорость химической реакции: природа реагирующих веществ; температура (закон Вант-Гоффа); концентрация (основной закон химической кинетики); катализаторы. Катализ: гомо- и гетерогенный; механизм действия катализаторов. Ферменты. Их сравнение с неорганическими катализаторами. Ферментативный катализ, его механизм. Ингибиторы и каталитические яды. Зависимость скорости реакций от поверхности соприкосновения реагирующих веществ.

Обратимость химических реакций. Химическое равновесие. Понятие о химическом равновесии. Равновесные концентрации. Динамичность химического равновесия. Константа равновесия. Факторы, влияющие на смещение равновесия: концентрация, давление и температура. Принцип Ле Шателье.

Электролитическая диссоциация. Механизм диссоциации веществ с различным типом химической связи. Свойства ионов. Катионы и анионы. Кислоты, соли, основания в свете электролитической диссоциации. Степень электролитической диссоциации, ее зависимость от природы электролита и его концентрации. Константа диссоциации. Ступенчатая диссоциация электролитов. Реакции, протекающие в растворах электролитов. Произведение растворимости.

Водородный показатель. Диссоциация воды. Константа диссоциации воды. Ионное произведение воды. Водородный показатель рН. Среды водных растворов электролитов. Значение водородного показателя для химических и биологических процессов.

Гидролиз. Понятие «гидролиз». Гидролиз органических соединений (галогеналканов, сложных эфиров, углеводов, белков, АТФ) и его значение. Гидролиз неорганических веществ. Гидролиз солей — три случая. Ступенчатый гидролиз. Необратимый гидролиз. Практическое применение гидролиза.

Расчетные задачи. 1. Расчеты по термохимическим уравнениям. 2. Вычисление теплового эффекта реакции по теплотам образования реагирующих веществ и продуктов реакции. 3. Определение рН раствора заданной молярной концентрации. 4. Расчет средней скорости реакции по концентрациям реагирующих веществ. 5. Вычисления с использованием понятия «температурный коэффициент скорости реакции». 6. Нахождение константы равновесия реакции по равновесным концентрациям и определение исходных концентраций веществ.

Демонстрации. Превращение красного фосфора в белый, кислорода — в озон. Модели н-бутана и изобутана. Получение кислорода из пероксида водорода и воды; дегидратация этанола. Цепочка превращений $P \to P_2O_5 \to H_3PO_4$; свойства соляной и уксусной кислот; реакции, идущие с образованием осадка, газа и воды; свойства металлов; окисление альдегида в кислоту и спирта в альдегид. Реакции горения; реакции эндотермические на примере реакции разложения (этанола, калийной селитры, известняка или мела) и экзотермические на примере реакций соединения (обесцвечивание бромной воды и раствора перманганата калия этиленом, гашение извести и др.). Взаимодействие цинка с растворами соляной и серной кислот при разных температурах, при разных концентрациях соляной кислоты; разложение пероксида водорода с помощью оксида марганца (IV), катал азы сырого мяса и сырого картофеля. Взаимодействие цинка с различной поверхностью (порошка, пыли, гранул) с кислотой. Модель «кипящего слоя». Смещение равновесия в системе $Fe^{3+} + 3CNS^{-} \leftrightarrow Fe(CNS)_3$; омыление жиров, реакции этерификации. Зависимость степени электролитической диссоциации уксусной кислоты от разбавления. Сравнение свойств 0,1 Н растворов серной и сернистой кислот; муравьиной и уксусной кислот; гидроксидов лития, натрия и калия. Индикаторы и изменение их окраски в различных средах. Сернокислый и ферментативный гидролиз углеводов. Гидролиз карбонатов, сульфатов, силикатов щелочных металлов; нитратов цинка или свинца (II). Гидролиз карбида кальция.

Лабораторные опыты. 3. Получение кислорода разложением пероксида водорода и (или) перманганата калия. 4. Реакции, идущие с образованием осадка, газа и воды для органических и неорганических кислот. 5. Использование индикаторной бумаги для определения рН слюны, желудочного сока и других соков организма человека. 6. Разные случаи гидролиза солей.

Практическая работа №2: 2. Скорость химических реакций, химическое равновесие.

Практическая работа №3: Решение экспериментальных задач по теме «Гидролиз».

Тема 4

Вещества и их свойства (34 ч)

Классификация неорганических вещества. Простые и сложные вещества. Оксиды, их классификация. Гидроксиды (основания, кислородсодержащие кислоты, амфотерные гидроксиды). Кислоты, их классификация. Основания, их классификация. Соли средние, кислые, основные и комплексные.

Классификация органических веществ. Углеводороды и классификация веществ в зависимости от строения углеродной цепи (алифатические и циклические) и от кратности связей (предельные и непредельные). Гомологический ряд. Производные углеводородов: галогеналканы, спирты, фенолы, альдегиды и кетоны, карбоновые кислоты, простые и сложные эфиры, нитросоединения, амины, аминокислоты.

Металлы. Положение металлов в периодической системе Д.И. Менделеева и строение их атомов. Простые вещества — металлы: строение кристаллов и металлическая химическая связь. Аллотропия. Общие физические свойства металлов. Ряд стандартных электродных потенциалов. Общие химические свойства металлов (восстановительные свойства): взаимодействие с неметаллами (кислородом, галогенами, серой, азотом, водородом), с водой, кислотами и солями в растворах, органическими соединениями (спиртами, галогеналканами, фенолом, кислотами), со щелочами. Значение металлов в природе и в жизни организмов.

Коррозия металлов. Понятие «коррозия металлов». Химическая коррозия. Электрохимическая коррозия. Способы защиты металлов от коррозии.

Общие способы получения металлов. Металлы в природе. Металлургия и ее виды: пиро-, гидро- и электрометаллургия. Электролиз расплавов и растворов соединений металлов и его практическое значение.

Переходные металлы. Железо. Медь, серебро; цинк, ртуть; хром, марганец (нахождение в природе; получение и применение простых веществ; свойства простых веществ; важнейшие соединения).

Неметаллы. Положение неметаллов в периодической системе Д.И. Менделеева, строение их атомов. Электроотрицательность. Инертные газы. Двойственное положение водорода в периодической системе. Неметаллы — простые вещества. Их атомное и молекулярное строение. Аллотропия и ее причины. Химические свойства неметаллов. Окислительные свойства: взаимодействие c металлами, водородом, менее электроотрицательными неметаллами. некоторыми сложными вешествами. Восстановительные свойства неметаллов в реакциях со фтором, кислородом, сложными веществами-окислителями (азотной и серной кислотами и др.).

Водородные соединения неметаллов. Получение их синтезом и косвенно. Строение молекул и кристаллов этих соединений. Физические свойства. Отношение к воде. Изменение кислотно-основных свойств в периодах и группах.

Несолеобразующие и солеобразующие оксиды.

Кислородные кислоты. Изменение кислотных свойств высших оксидов и гидроксидов неметаллов в периодах и группах. Зависимость свойств кислот от степени окисления неметалла.

Кислоты органические и неорганические. Кислоты в свете протолитической теории. Сопряженные кислотно-основные пары. Классификация органических и неорганических кислот. Общие свойства кислот: взаимодействие органических и неорганических кислот с металлами, с основными оксидами, с амфотерными оксидами и гидроксидами, с солями, образование сложных эфиров. Особенности свойств концентрированной серной и азотной кислот. Особенности свойств уксусной и муравьиной кислот.

Основания органические и неорганические. Основания в свете протолитической теории. Классификация органических и неорганических оснований. Химические свойства щелочей и нерастворимых оснований. Свойства бескислородных оснований: аммиака и аминов. Взаимное влияние атомов в молекуле анилина.

Амфотерные органические и неорганические соединения. Амфотерные соединения в свете протолитической теории. Амфотерность оксидов и гидроксидов некоторых металлов: взаимодействие с кислотами и щелочами. Понятие о комплексных соединениях. Комплексообразователь, лиганды, координационное число, внутренняя сфера, внешняя сфера. Амфотерность аминокислот: взаимодействие аминокислот со щелочами, кислотами, спиртами, друг с другом (образование полипептидов), образование внутренней соли (биполярного иона).

Генетическая связь между классами органических и неорганических соединений. Понятие о генетической связи и генетических рядах в неорганической и органической химии. Генетические ряды металла (на примере кальция и железа), неметалла (на примере серы и кремния), переходного элемента (на примере цинка). Генетические ряды и генетическая связь в органической химии (для соединений, содержащих два атома углерода в молекуле). Единство мира веществ.

Расчетные задачи. 1. Вычисление массы или объема продуктов реакции по известной массе или объему исходного вещества, содержащего примеси. 2. Вычисление массы исходного вещества, если известен практический выход и массовая доля его от теоретически возможного. 3. Вычисления по химическим уравнениям реакций, если одно из реагирующих веществ дано в избытке. 4. Определение молекулярной формулы вещества по массовым долям элементов. 5. Определение молекулярной формулы газообразного вещества по известной относительной плотности и массовым долям элементов. 6. Нахождение молекулярной формулы вещества по массе (объему) продуктов сгорания. 7. Комбинированные задачи.

Демонстрации. Коллекция «Классификация неорганических веществ» и образцы представителей классов. Коллекция «Классификация органических веществ» и образцы представителей классов. Модели кристаллических решеток металлов. Коллекция металлов с разными физическими свойствами. Взаимодействие: а) лития, натрия, магния и железа с кислородом; б) щелочных металлов с водой, спиртами, фенолом; в) цинка с растворами соляной и серной кислот; г) натрия с серой; д) алюминия с иодом; е) железа с раствором медного купороса; ж) алюминия с раствором едкого натра. Оксиды и гидроксиды хрома, их получение и свойства. Переход хромата в бихромат и обратно. Коррозия металлов в зависимости от условий. Защита металлов от коррозии: образцы «нержавеек», защитных покрытий. Коллекция руд. Электролиз растворов солей. Модели кристаллических решеток иода, алмаза, графита. Аллотропия фосфора, серы, кислорода. Взаимодействие: а) водорода с кислородом; б) сурьмы с хлором; в) натрия с иодом; г) хлора с раствором бромида калия; д) хлорной и сероводородной воды; е) обесцвечивание бромной воды этиленом или ацетиленом. Получение и свойства хлороводорода, соляной кислоты и аммиака. Свойства соляной, разбавленной серной и уксусной кислот. Взаимодействие концентрированных серной, азотной кислот и разбавленной азотной кислоты с медью. Реакция «серебряного зеркала» для муравьиной кислоты. Взаимодействие раствора гидроксида натрия с кислотными оксидами (оксидом углерода (IV)), амфотерными гидроксидами (гидроксидом цинка). Взаимодействие аммиака с хлороводородом и водой. Аналогично для метиламина. Взаимодействие аминокислот с кислотами и щелочами. Осуществление переходов: $Ca \rightarrow CaO \rightarrow Ca(OH)_2$; $P \rightarrow P_2O_5 \rightarrow H_3PO_4 \rightarrow Ca_3(PO_4)_2$; $Cu \rightarrow$ $CиO \rightarrow CuSO_4 \rightarrow Cu(OH)_2 \rightarrow CиO \rightarrow Cи; C_2H_5OH \rightarrow C_2H_4 \rightarrow C_2H_4Br_2.$

Лабораторные опыты. 7. Ознакомление с образцами представителей разных классов неорганических веществ. 8. Ознакомление с образцами представителей разных классов органических веществ. 9. Ознакомление с коллекцией руд. 10. Сравнение свойств кремниевой, фосфорной, серной и хлорной кислот; сернистой и серной кислот; азотистой и азотной кислот. 11. Свойства соляной, серной (разб.) и уксусной кислот. 12. Взаимодействие гидроксида натрия с солями, сульфатом меди (II) и хлоридом аммония. 13. Разложение гидроксида меди (II). Получение гидроксида алюминия и изучение его амфотерных свойств.

Практическая работа №4: Генетическая связь между классами неорганических и органических веществ.

Практическая работа №5:.Получение, собирание и распознавание газов и изучение их свойств

Практическая работа № 6:Решение экспериментальных задач по неорганической химии.

Практическая работа №.7: Решение экспериментальных задач по органической химии

Практическая работа №8: Сравнение свойств неорганических и органических соединений.

Тема 5

Химический практикум (8 ч) (проводится в темах)

1. Получение, собирание и распознавание газов и изучение их свойств. 2. Скорость химических реакций, химическое равновесие. 3. Сравнение свойств неорганических и органических соединений. 4. Решение экспериментальных задач по теме «Гидролиз». 5. Решение экспериментальных задач по неорганической химии. 6. Решение экспериментальных задач по органической химии. 7. Генетическая связь между классами неорганических и органических веществ. 8. Распознавание пластмасс и волокон.

Тема 6

Химия и общество (7 ч)

Химия и производство. Химическая промышленность, химическая технология. Сырье для химической промышленности. Вода в химической промышленности. Энергия для химического производства. Научные принципы химического производства. Защита окружающей среды и охрана труда при химическом производстве. Основные стадии химического производства (аммиака и метанола). Сравнение производства этих веществ.

Химия и сельское хозяйство. Химизация сельского хозяйства и ее направления. Растения и почва, почвенный поглощающий комплекс (ППК). Удобрения и их классификация. Химические средства защиты растений. Отрицательные последствия применения пестицидов и борьба с ними. Химизация животноводства.

Химия и экология. Химическое загрязнение окружающей среды. Охрана гидросферы от химического загрязнения. Охрана почвы от химического загрязнения. Охрана атмосферы от химического загрязнения. Охрана флоры и фауны от химического загрязнения. Биотехнология и генная инженерия.

Химия и повседневная жизнь человека. Домашняя аптечка. Моющие и чистящие средства. Средства борьбы с бытовыми насекомыми. Средства личной гигиены и косметики. Химия и пища. Маркировка упаковок пищевых продуктов и промышленных товаров и умение их читать. Экология жилища. Химия и генетика человека.

Демонстрации. Модели производства серной кислоты и аммиака. Коллекция удобрений и пестицидов. Образцы средств бытовой химии и лекарственных препаратов. Коллекции средств гигиены и косметики, препаратов бытовой химии.

Лабораторные опыты. 14. Ознакомление с коллекцией удобрений и пестицидов. 15. Ознакомление с образцами средств бытовой химии и лекарственных препаратов, изучение инструкций к ним по правильному и безопасному применению.

Тематическое планирование

$N_{\underline{0}}$	Тема	Кол-во часов
Π/Π		
1	Строение атома	12
2	Строение вещества. Дисперсные системы	13
3	Химические реакции	25
4	Вещества и их свойства	34
5	Химия и общество	7